



# Next Generation Cellulosic Filaments from Hemp - HighPerCell<sup>®</sup> meets Iroony<sup>®</sup>

Marc Vocht (DITF), Anne Reboux (RBX Créations), Antje Ota (DITF), Frank Hermanutz (DITF), Charles Reboux (RBX Créations)

## DITF Denkendorf German Institutes of Textile and Fibre Research

• Founded in 1921

© DITF

- Foundation under public law under the supervision of the Baden-Württemberg Ministry of Economics, Labor and Housing foundation
- Application oriented research from molecule to product
- Research with industrial pilot facilities, focus on technical textiles and life sciences





DEUTSCHE INSTITUTE FÜR TEXTIL+FASERFORSCHUNG







DEUTSCHE INSTITUTE FÜR TEXTIL+FASERFORSCHUNG

#### **Competence Center Biopolymer Materials**

**Biopolymers** Establishment of new Approaches



#### **Renewable Resources**

- Sustainable raw materials like cellulose, chitin, keratin, alginate
- Smart, recyclable solvents

HighPerCell<sup>®</sup> Process Flexible Spinning Techniques



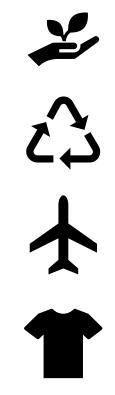
#### **Biopolymer Processing**

- Biopolymer fibres for textile and technical
- Foils and coatings

Product Development Application



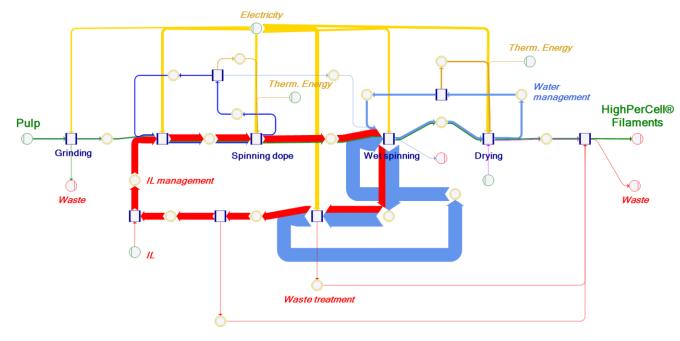
#### **Innovation and Sustainability**


- Reinforcement for composites
- Carbon fibres from cellulose
- Textile applications

## HighPerCell<sup>®</sup> technology – Spinning of Cellulose Filaments

## HighPerCell<sup>®</sup> technology developed by DITF

- Sustainable and ecofriendly patented spinning process
- Direct dissolution of biopolymers based on ionic liquids (IL)
- High versatility of feedstocks
- Low temperature process, no need of stabilizers
- IL selected are non-toxic, non-inflammable, stable, harmful to environment and > 99% recyclable
- Filaments suitable for textile and technical applications






### HighPerCell<sup>®</sup> technology – Spinning of Cellulose Filaments

DEUTSCHE INSTITUTE FÜR TEXTIL+ FASERFORSCHUNG

Material flow cost accounting (MFCA) performed by Management Research@DITF



- 3 component system: pulp + IL + water
- Water-saving process (no waste water)
- Closed loop process

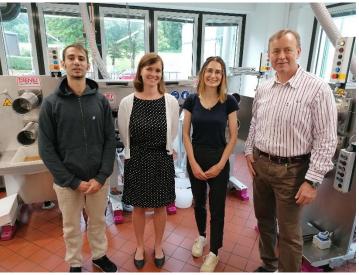


## • Goal: Market potential of hemp cellulosic

- pulp produced by an unique patented process and its possible transformation into cellulose filaments through HighPerCell<sup>®</sup> technology
- Ongoing collaboration until now (R&D, Up-scaling filament)

(HighPerCell<sup>®</sup> x Iroony<sup>®</sup>)

• ELIIT project: 09/2020 - 08/2021




ELIIT Project is funded by COSME Programme European of the European Union for the competitiveness of Enterprises and Small and Medium-Sized Commission Enterprises (SMEs)





DEUTSCHE INSTITUTE FÜR TEXTIL+ FASERFORSCHUNG



#### Anne Reboux **Co-founder / Managing Director** ELIIT role : project manager

**Charles Reboux** Co-founder / President & CTO ELIIT role : technical expert on hemp & textile supply chain

auitaine

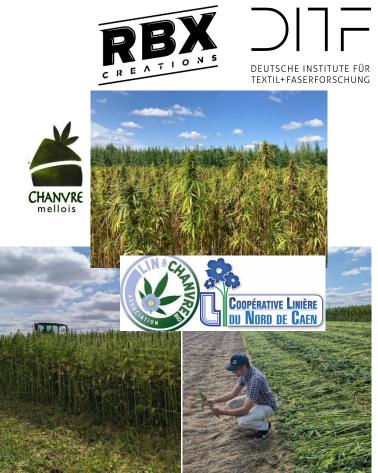




### **Technical cellulose filaments from hemp** (HighPerCell<sup>®</sup> x Iroony<sup>®</sup>)






- Hemp key facts : ✓ Massive carbon sink (about 15 tons of  $CO_2$  per hectare)
  - $\checkmark$  Fast growing (4 months), resistant
  - $\checkmark$  No irrigation, no pesticides
  - ✓ Soil restructuration
  - $\checkmark$  Per ha: 4-6 tones of stalks, ~ 1 tons of seeds source of proteins
  - ✓ France No 1 producer in Europe with more than 22,000 Ha





## Technical cellulose filaments from hemp (HighPerCell<sup>®</sup> x Iroony<sup>®</sup>)

- RBX is part of "Hemp & organic Linen association" and works with different agricultural partners, from large cooperatives (Coopérative linière du Nord de Caen) to smaller farming groups (ex: Chanvre Mellois)
- ✓ Rotational farming
- Sourcing to any hemp cultivation model, no specific retting
- Optimized valuation of stalks (use of by-products)
- Possible mix tested (miscanthus, flax)
- Patented pulp production process by RBX



#### Technical cellulose filaments from hemp (HighPerCell<sup>®</sup> x Iroony<sup>®</sup>)





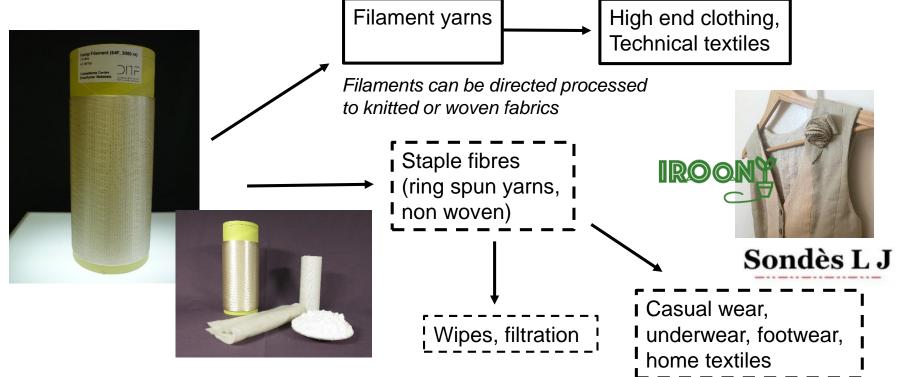
Hemp pulp

- $\alpha$ -cellulose content > 91%
- Ash content < 0.3 wt.-%
- 100% dissolvable in IL



#### HighPerCell<sup>®</sup> technology

- Fresh and recycled solvent
- Spinning temperatures < 80 °C
- Dope concentration: 12 wt.-%




#### **Continous cellulose filaments**

| Elongation [%]:          | 5-12      |
|--------------------------|-----------|
| Tenacity [cN/tex]:       | 25-45     |
| Titer [dtex]:            | 2.0-3.3   |
| Young's modulus [cN/tex] | 1600-2600 |

## Application of cellulose filaments from hemp (HighPerCell<sup>®</sup> x Iroony<sup>®</sup>)





11

#### **SUMMARY**

- Hemp feedstock efficiently processed to support its cultivation
- Local feedstock, 100% traceability, 100% renewable resource
- Environmental friendly pulp: cellulose-rich and high purity
- Successful application in HighPerCell® spinning process
- Suitable for textile and technical applications
- Iroony<sup>®</sup> hemp fibers are more sustainable compared to oilbased, cotton and viscose fibers (first LCA)
- Iroony<sup>®</sup> hemp fibers through HighPerCell<sup>®</sup> perfectly meeting market demands for both low-impact & quality materials









DEUTSCHE INSTITUTE FÜR TEXTIL+FASERFORSCHUNG

#### Please contact us:

## Antje.Ota@ditf.de Anne.Reboux@iroony.net

## Thank you for your attention

#### Spinning for the future.





ELIIT Project is funded by COSME Programme of the European Union for the competitiveness of Enterprises and Small and Medium-Sized Enterprises (SMEs)